
On the performance impact of using

JSON, beyond impedance mismatch

Moditha Hewasinghage
Sergi Nadal

Alberto Abelló

1

• Overhead generated by transformation from internal structures, to relational, and

finally to programming structures

• OO concepts are mathematical graphs

• Relational schemas are tabular

• Flexible data formats to overcome the issue (JSON)

• Can be directly mapped from disk to memory

• Breaking the normal forms is encouraged

• Nested structures

• Arrays

• Skip schema declaration

Problem of impedance mismatch

Oracle dev guide (https://www.oracle.com)

2

• Is it a conscious database design choice ?

• Is it a limitation of NOSQL systems ?

• Need to consider the benefits and drawbacks of different

alternatives

• The flexibility of NOSQL comes at a price

• Each associated design choice change the physical representation

• Impact on performance

• Today, binary design decisions based on rules

• Important to consider the pros and cons of different alternatives

during the design process

Denormalization and schemaless

3

• Empirically quantify the impact of design choices in semi-structured data

• Focus on JSON (most popular data format used on the Web)

• Identify the main design characteristics of semi-structured data and

compare them to their structured counterpart

• Compare the different alternatives in a relational (PostgreSQL) and non-

relational (MongoDB) DBMS

Our contribution

4

Representation differences

Schema
variability

Metadata
representation

Attribute
optionality

Schema
declaration

Data types

Integrity
constraints

Structural
complexity

Nested
structures

Arrays

5

Experimental setting

• MongoDB v4.2 (JSON) and PostgreSQL v12 (Relational & JSON) default parameters

on databases except no compression in MongoDB

• char(24) primary key in Postgres (equivalent to MongoDB _id)

• JSONB to store JSON in Postgres

• 1 million random documents inserted in 100 batches of 10 000 documents

• Program in Java using latest drivers

• Measure storage size, insertion, query times

• Cache cleared and DBs restarted before each query

• db.collection.status() and pg_total_relation_size() used to measure the storage size

• https://github.com/dtim-upc/MongoDBTests

6

Summary – Storage size

• Storing tuples takes less storage space

for integers

• MongoDB BSON has better encoding

that reduces the storage space

• If data is text, JSON prevails (metadata

experiment)

• Validation does not have any impact on

storage space

7

Summary – Insertion time

• Having ACID properties hinders PostgreSQL performance

• MongoDB insertion is always faster (delayed flushing to disk)

• JSON is better for attribute optionality, nesting, multivalued attributes

and large text storage

• JSON validation is expensive

8

Summary – Aggregation

• Relational aggregation performs better

• Within relational, tuples are better for aggregations

• JSON at a disadvantage due to parsing

9

Conclusion and future work

• The decision of relational vs correlational is not trivial

• Storage size mostly depends on the engine and the encoding

• Relational is slower in inserts but faster in aggregations

• Extend the experiments

• Caching mechanisms

• Indexing structures

• Other DBMS features also affect performance

• Concurrency control

• Distribution

• Connection pools

• DB setup parameters

10

