v

On the performance 1mpact of using
JSON, beyond impedance mismatch

Moditha Hewasinghage
Sergl Nadal
Alberto Abell6

ADB:S .

i Juus [T

v

Problem of impedance mismatch

* Overhead generated by transformation from mnternal structures, to relational, and
finally to programming structures
* OO concepts are mathematical graphs
* Relational schemas are tabular

* Flexible data formats to overcome the 1ssue (JSON)
e Can be directly mapped from disk to memory

. .) I -
* Breaking the normal forms 1s encouraged & |v— .;: "
schema Relational Legacy
* Nested structures Database System
* Arrays %
* Skip schema declaration s/ @ W
) Inheritance ww XML Elements j) Préiieﬂea
'-:.: Business f_'-;-;';f' Key
Relationships Rules I:%:“ References

Tahles

Oracle dev guide (https://www.oracle.com)

2

v

Denormalization and schemaless

* Is 1t a conscious database design choice ?

e Is 1t a imitation of NOSQL systems ?

* Need to consider the benefits and drawbacks ot ditlerent
alternatives

* The tlexibility of NOSQL comes at a price
* ILach associated design choice change the physical representation
* Impact on performance

* T'oday, binary design decisions based on rules

* Important to consider the pros and cons of different alternatives
during the design process

v

Our contribution

* Empirically quantfy the impact of design choices in semi-structured data
* Focus on JSON (most popular data format used on the Web)
* Identily the main design characteristics of semi-structured data and

compare them to their structured counterpart

 Compare the difterent alternatives 1n a relational (PostgreSQL) and non-

relational (MongoDB) DBMS

v

Representation differences

Schema Schema Structural
variability declaration complexity
Metadata Data tvpes Nested
representation P structures
Attribute Integrity
optionality constraints Arrays

v

Fxperimental setting

MongoDB v4.2 (JSON) and Postgre SQL v12 (Relational & JSON) default parameters

on databases except no compression in MongoDB

char(24) primary key i Postgres (equivalent to MongoDB _1d)

JSONB to store JSON 1n Postgres

I million random documents mserted in 100 batches of 10 000 documents
Program 1n Java using latest drivers

Measure storage size, 1nsertion, query times

Cache cleared and DBs restarted before each query
db.collection.status() and pg_total_relation_size() used to measure the storage size

https://github.com/dtim-upc/MongoDB Tests

v

Summary - Storage size

Storing tuples takes less storage space @ postgresaL-sson Metadata.representation
® PostgreSQL-Tuple

- MongoDB M
for integers beiiiougs 473 %,

MongoDB BSON has better encoding
that reduces the storage space #
If data 1s text, JSON prevails (metadata Attribute optiofality- ¢-- -

S felultivalued.attributes

experimment)

Validation does not have any impact on

storage space

Nested.data

v

Summary - Insertion time

 Having ACID properties hinders PostgreSQL performance
 MongoDB 1nsertion 1s always faster (delayed flushing to disk)

* JSON 15 better for attribute optionality, nesting, multivalued attributes

@® PostgreSQL-JSON Metadata.representation

and large text storage i
e JSON validation 1s expensive | L o .
Attrlbute.optlo'nalrty ~ Multivalued.atiributes
Data.type.validation e, | T _.~Nested.data

|C.validation

v

Summary - Aggregation

* Relational aggregation performs better

 Within relational, tuples are better for aggregations

: : @® PostgreSQL-JSON Metadata.representation
* JSON at a disadvantage due to parsing ® PostgreSQL-Tuple .
® MongoDB

Nested.data

v

Conclusion and future work

* The decision of relational vs correlational 1s not trivial
* Storage size mostly depends on the engine and the encoding
* Relational 1s slower 1n mserts but faster in aggregations

* Iixtend the experiments

e Caching mechanisms
* Indexing structures
e Other DBMS features also aftect performance
* Concurrency control
e Distribution
* Connection pools
* DD setup parameters

10

